
[CS163] jaledit: just a little editor 1

[CS163] jaledit: just a little
editor

Author: 22125113 - Nguyen Quang Truong

Table of content
Table of content
Introduction
Features
Demonstration
Repository

License
Commit history

Releases
Dependencies
Building
Usage

Editor
Buffer Manager
Keybinding

Normal mode
Insert mode
Visual mode

[CS163] jaledit: just a little editor 2

Introduction
This is a source code text editor that focuses on performance. With the help of
different data structures and algorithms, this editor offers superior performance
over popular existing editors (Vim, Nano, Visual Studio Code, Sublime Text, …), as it
enables efficient editing operations and manages huge files (that would otherwise
crash or stall other editors).

Buffer Manager
Finder

Internal Implementation
Rope

Introduction
“Keep It Simple, Stupid?”
Handling larger files with Rope
Underlying Structure of Rope
Rope Concatenation
Rope Split
Rope Insertion
Rope Deletion
Rope Rebalancing
Notable Implementation Details

Keybindings
Introduction
Implementation

Autocompletion
Introduction
The Smith-Waterman Algorithm
Implementation

Syntax highlight
Introduction
Parsing?
Coloring

Finder
Introduction
Implementation
Finding a string in the file

Rejected Experiments
C
Piece Table/Piece Tree

[CS163] jaledit: just a little editor 3

Features
Fast editing operations (insertion and deletion, copy and paste, find and
replace…);

Autocompletion;

Extensible syntax highlight;

Vim-like navigation;

Buffer management.

Demonstration
using jaledit to solve programming problems

jaledit loads faster than other editors

Repository
Here is the repository of the project on GitHub.

License
This project (the source code, the logo, and the released binary) is licensed under
the GNU Affero General Public License v3.0.

Commit history
There are 59 commits throughout the project:

0b9c308 Force close buffer
59b4dbe Add logo
6b96533 Remove sample files
44ee33c Modify scoring for autocompletion
47e7b56 Replace dependency
8ae1708 Completely remove raygui
4e9539f Implement find and replace
ca50656 Create new buffers and save as another file
042e3b4 Remove buffer
5c3f61a Mark dirty buffers in buffer manager
d10e1c4 Fix weird behaviors in buffer list mode

https://www.youtube.com/watch?v=DOiqO8f-9TY
https://www.youtube.com/watch?v=o27J9EdEBYo
https://github.com/jalsol/jaledit

[CS163] jaledit: just a little editor 4

1e51a4b Open new files and buffer management
26d532f Save dirty state in snapshot
8ed6ed0 Fix entering new line
46b555e Do not mark dirty when undo stack is empty
fbb7c16 Do not jump if line is empty
186afcf Implement autocompletion
e049d8c Render tab as 8 spaces
089dc55 Allow file saving
97c7ab1 Reformat
65443cf Fix rendering for files that don't end with empty line
a1e1448 Additional support for syntax highlight
5df0414 Syntax highlight
1f96871 Display file name on status bar
07af81b Update view with word move
61032ab Add status bar
75d4902 Add delete word
551d685 Avoid moving past the beginning of file
c5a8f2b Refactor components
20065c2 Avoid totally empty buffer
c34d71d Avoid moving cursor to the terminating null character of the file
e1b3298 Implement visual mode and clipboard operations
5d0e940 Delete character at cursor
f7161a1 Keep cursor in the view when new line is entered
1c91463 Keep cursor in undo/redo
6b62157 Read file by chunks of 1MB
094c1ce Efficient file read and buffer rendering
a4b2a5e Move to cursor to eol on Normal mode
6a035d3 Allow append
2c34274 Allow modifiers to stay up after polling
d51742e Allow non-printable character inputs
3560128 Support insert and delete in the editor
7f7585b Fix substr logic
7f53412 Fix the correct rope index for the exceeding line index
d747839 Move cursor movement to buffer; Add cursor word movement
31993c0 Enforce consteval fib_list()
2ead2cb Implement basic movement
b990454 Avoid indexing with member function
0276940 Attempt to partially fix lint

[CS163] jaledit: just a little editor 5

af25f15 Add Buffer and Editor to test rendering
c186d41 Finish rope implementation
c79d487 Rework rope nodes for resource sharing
e9de2b4 Update .clang-format
ec418f4 Implement Node for rope
2354fca Enforce concepts to Func
76f0027 Add font
604cbeb Implement keybind trie in C++
96941fe Project setup
0eca6c5 Initial commit

Releases
Please check out the Release section of the repository.

Since the editor invokes system calls from the Linux kernel, this editor can only be
run on Linux-based OS. However, ports for other kernels are coming very soon!

Dependencies
A Linux-based OS (will update in the future)

C++20 (GNU GCC 12.1.0)

CMake 3.22 or above

My modified version of Raylib

Native File Dialog Extended

Building
Install the correct dependencies

Clone this repository

git submodule update --init --recursive

cmake -S. -Bbuild

make -Cbuild [-j <number of threads>]

The executable jaledit in the directory build/ will appear.

https://github.com/jalsol/raylib/tree/repeated-keys
https://github.com/btzy/nativefiledialog-extended

[CS163] jaledit: just a little editor 6

Usage
jaledit is greatly inspired by Vim, one of my favorite text editors. Most features in
jaledit are copied from Vim, including the keybindings and the functionalities, but with
my own twists.

Editor

This is the default view of jaledit.

At the top is the status bar.

On the left of the status bar is the mode indicator (as jaledit, just like Vim, is a
modal editor).

On the right is the name of the file (or "new file" if it’s a new buffer). There is an
asterisk next to the filename if there are unsaved changes.

On the left of the editor is the line number column.

[CS163] jaledit: just a little editor 7

The color scheme chosen for jaledit is Catppuccin Latte. At the moment, jaledit does
not support choosing another color scheme.

Buffer Manager

This is the Buffer Manager.

Each line corresponds to a buffer entry. This allows switching between multiple
buffers and lets you work on multiple files inside jaledit.

Keybinding

Normal mode

Keybinding Usage

h Move the cursor to the left

j Move the cursor down

k Move the cursor up

l Move the cursor to the right

gg Move the cursor to the first line

G Move the cursor to the last line

0 Move the cursor to the first column

$ Move the cursor to the last column

w Move the cursor to the next word

b Move the cursor to the previous word

i Enter Insert mode

https://github.com/catppuccin/catppuccin

[CS163] jaledit: just a little editor 8

Keybinding Usage

v Enter Visual mode

o Move the cursor down, insert a new line, and enter Insert mode

O Move the cursor up, insert a new line, and enter Insert mode

a Move to the next column and enter Insert mode

A Move past the last column and enter Insert mode

u Undo

r Redo

x Cut the current character on the cursor

p Paste

dd Cut the current line

yy Copy the current line

dw Delete the current word on the cursor

cw Delete the current word on the cursor and enter Insert mode

s Save

S Save as

f Enter the Buffer Manager

F Open a file

/ Find

? Replace

n Move the cursor to the next occurrence found

N Move the cursor to the previous occurrence found

Insert mode

Keybinding Usage

Esc Return to Normal mode

Ctrl-n Open the autocomplete box and choose the next suggestion

Ctrl-p
Open the autocomplete box and choose the previous
suggestion

Visual mode

Keybinding Usage

[CS163] jaledit: just a little editor 9

Keybinding Usage

Esc Return to Normal mode

d Cut the current selection

y Copy the current selection

Buffer Manager

Keybinding Usage

Esc Return to Normal mode

f Return to Normal mode

d Close the current buffer (if not dirty)

D Force close the current buffer

n Create a new buffer

Finder

Keybinding Usage

Esc Return to Normal mode

Tab Switch between “Find” input and “Replace” input

Enter Find/Replace

Internal Implementation
There are 5 important modules implemented in the project:

Rope

Keybindings

Autocompletion

Syntax Highlight

Finder

Rope

Introduction

[CS163] jaledit: just a little editor 10

Unsurprisingly, the most essential functionality of a text editor is the ability to edit text
efficiently. The operations commonly used in a text editor usually include (but are not
limited to):

Insertion, deletion;

Concatenation, split;

Undo, redo.

Although these operations appear fairly simple and are often taken for granted in
every text editing application, internal implementation to make them efficient is often
less mentioned.

“Keep It Simple, Stupid?”
For files that are about a few MBs, the best way to manage them is the simplest way
(applying the KISS principle): treating the entire content of a file as a simple string.
To insert a piece of text into the middle of the file:

Split the string (which is the content of the file) into two parts;

Move the latter part further back to create a gap for the inserted text (may
require reallocation to extend memory);

Insert the text into the gap.

The size of the L3 Cache on modern PC CPUs usually varies from 1 MB to 64MB
(up to 256MB for server computers). This means that if the file is small enough to fit
inside the L3 Cache, we can benefit from the very fast memmove() call, despite the

 time complexity and space complexity.

This procedure is, in fact, a subroutine for Insertion Sort, which is known to have
good performance on small arrays by utilizing the CPU Cache.

Handling larger files with Rope
To handle larger files that cannot fit inside a CPU Cache (for example, files that have
hundreds of MBs or even some GBs), data structures are required. There are some
options used by popular editors:

Array of Lines: used by Vim;

Gap Buffer: used by Emacs;

Piece Table: used by Visual Studio Code, Microsoft Word.

O(n) O(n)

https://github.com/vim/vim/blob/master/src/fileio.c#L1232-L1292
https://en.wikipedia.org/wiki/Gap_buffer
https://www.gnu.org/software/emacs/manual/html_node/elisp/Buffer-Gap.html
https://en.wikipedia.org/wiki/Piece_table
https://code.visualstudio.com/blogs/2018/03/23/text-buffer-reimplementation
https://web.archive.org/web/20160308183811/http://1017.songtrellisopml.com/whatsbeenwroughtusingpiecetables

[CS163] jaledit: just a little editor 11

Each of these data structures has its pros and cons. However, I was fascinated by
Rope, a data structure that treats a large string as a concatenation of smaller
substrings, connected by a tree structure. Rope is claimed to be used by Sublime
Text and Gmail (however, I didn’t find any other reliable sources to back up this
claim).

Rope had been used in the past, but the most well-known paper on the rope was
published in December 1995, by Hans-J. Boehm, Russ Atkinson, and Michael Plass
from Xerox.

Underlying Structure of Rope
Rope is a balanced tree, where each leaf contains an immutable substring. The
internal nodes are used to represent the concatenation of the substrings and may
contain some special values for convenience.

Many different balanced trees can be used as the backbone of rope. Some
examples like B-Tree or AVL Tree are mentioned in the paper. However, the paper
also proposes another balancing condition as well, which will be used for
implementation later.

Rope Concatenation
Since the rope is a tree, the concatenation of two ropes is trivial:

Create a new root node;

A rope that represents the string "Hello my name is Simon" . Courtesy: Wikipedia.

https://en.wikipedia.org/wiki/Rope_(data_structure)
https://iq.opengenus.org/rope-data-structure/
https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.14.9450&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Rope_(data_structure)#/media/File:Vector_Rope_example.svg

[CS163] jaledit: just a little editor 12

Assign the left and right rope to the left and right child of that root node,
respectively.

The time complexity of concatenation is since the number of steps to
concatenate is constant.

Concatenation also requires only one new node to connect the left and the right
subtree. Thus, the space complexity is .

Rope Split
There are 2 cases:

The split point is at the end of the substring of a leaf;

The split point is in the middle of the substring of a leaf.

The first case can be solved by the following procedure recursively:

Concatenating "Hello my " and "name i" . Courtesy: Wikipedia.

O(1)

O(1)

https://en.wikipedia.org/wiki/Rope_(data_structure)#/media/File:Vector_Rope_concat.svg

[CS163] jaledit: just a little editor 13

If the split point belongs to the left subtree, split the left subtree into two smaller
subtrees at the split point;

Denote the left and the right subtree of the left subtree as the “left-left” and the
“left-right” subtrees, respectively;

We know that:

The “left-left” subtree represents the first part of the rope;

The “left-right” subtree and the right subtree represent the second part of the
rope;

Thus, return the “left-left” subtree, and the concatenation of the “left-right” and
the right subtree as a pair;

If the split point belongs to the right subtree, we apply almost the same logic but
on the other side.

The second case can be solved just like the first case, the only difference being that
the split point is in the middle of the substring of the leaf node. In such a case:
replace the leaf node with two new leaf nodes, each containing its respective half of
the substring.

The time complexity of splitting the rope is . The traversal goes as far as
the depth of the tree.

The space complexity is since concatenation may happen at each level of
the tree.

If leaf splitting is performed, the extra time complexity for creating new leaves may
be added (although in practice this can be very fast because the substring is small
enough). Some implementations may even try to share resources, eliminating the
cost of creating any new strings at all.

O(log n)

O(log n)

[CS163] jaledit: just a little editor 14

Splitting "Hello my name is Simon" into "Hello my na" and "me is Simon" . Courtesy: Wikipedia.

https://en.wikipedia.org/wiki/Rope_(data_structure)#/media/File:Vector_Rope_split.svg

[CS163] jaledit: just a little editor 15

Rope Insertion
Insertion can be implemented using Concatenation and Split.

To insert a string into the rope at position :

Convert the input string into the input rope;

Split the original rope at position ;

Concatenate the first part of the split, the input rope, and the second part of the
split together.

The complexity of Insertion is the total complexity of one Split and two
Concatenations, which is time and space.

Rope Deletion
Just like Insertion, Deletion can also be implemented using Concatenation and Split.

To delete the characters with the indices in the range :

Split the original rope at position to get the left and the right subtree;

Split the right subtree at position to get the “right-left” and “right-right” subtrees;

Concatenate the left subtree and the “right-right” subtree.

The complexity of Deletion is the total complexity of two Splits and one
Concatenation, which is time and space.

Rope Rebalancing
Rope is a tree. Like any other search tree, the rope has to be balanced to achieve
efficiency for all operations.

A rope may be implemented using any existing balanced trees, such as the B-tree
and the AVL tree as mentioned in the paper. There’s another simpler method used
for rebalancing the rope that is featured in the paper.

We define the depth of a tree as the maximum depth of the left and the right subtree
plus one. The depth of a leaf node is .

Let be the -th Fibonacci number. The rope of depth is considered balanced
if the length of the string it represents is at least . Please note that a
balanced rope may contain unbalanced sub ropes.

The procedure to rebalance the rope is to simply rebuild the rope in a specific way.
Since it is not easy to summarize the steps, I advise reading the paper itself to learn

i

i

O(log n) O(log n)

[a; b]

a

b

O(log n) O(log n)

0

F(n) n n

F(n+ 2)

[CS163] jaledit: just a little editor 16

more.

Because the time complexity for rebuilding the rope is , it is suggested that the
rebalancing only occurs selectively, or when a threshold is reached that violates the
balanced condition.

Notable Implementation Details
Rope was part of the SGI STL. Nowadays, it is still included as part of the Extension
headers of the GNU C++ Library (although it’s abandoned) and was never
standardized as part of the C++ Standard Library. My implementation of the rope
features some notable additional implementation details that differ from that of the
SGI STL.

There are different ways to implement the Undo/Redo operations. The easiest is to
create a carbon copy of the current string to a stack before it is mutated. However,
this requires a lot of memory, and since the target is to load a file that’s a few
hundred MBs large, this is inherently insufficient.

Another method is to only store the parts that are about to be changed in the stack,
and not the entire string. I find this difficult to implement well.

One idea that I found is Immutable Data Structures. I am greatly inspired by
JuanPe’s talk at CppCon 2017, where he talked about using a Relaxed Radix
Balanced Tree to create a “flex vector”, an immutable data structure. Immutable Data
Structures are very important in the Functional Programming paradigm, where
objects are immutable to not cause any side effects. They save memory by sharing
common resources between their different versions

The property of immutability already exists in some parts of the rope, namely the
substrings that the leaves hold. I simply apply the same idea for the internal nodes,
using std::shared_ptr in C++, which is a built-in smart pointer type with a reference
counter. std::shared_ptr keeps track of how many references to the address there
are, and it will free the memory if and only if the reference counter drops to .

Most of the resources are shared between different versions, and only a few nodes
from the root to the updated leaves are updated. This makes implementing the
Undo/Redo operations incredibly easy: our stack now contains actual Rope objects
and neither carbon copies nor detached pieces of information.

O(n)

0

https://web.archive.org/web/20070628221742/http://www.sgi.com/tech/stl/ropeimpl.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_sgi.html
https://github.com/jalsol/jaledit/tree/cpp-reimpl/src/rope
https://www.youtube.com/watch?v=sPhpelUfu8Q

[CS163] jaledit: just a little editor 17

Keybindings

Introduction
Each sequence of keys is mapped to a function. Hence, to quickly match the input
command to the desired function, a Trie is used.

These functions return new Ropes that should not be discarded. The source code is viewed inside
jaledit.

[CS163] jaledit: just a little editor 18

Implementation

class Keybind {
public:
 Keybind();
 ~Keybind();

 template<std::invocable Func>
 void insert(std::string_view keyseq, Func func, bool editable);

 void step(char c, bool editable);
 void reset_step();

private:
 using Node = keybind::Node;

 Node* m_root{new Node};
 Node* m_current{};
};

namespace keybind {

class Node {
public:
 void set_parent(Node* parent);
 Node*& parent();

An example of a Trie with the commands di{ , di(, dd , and dw . Each leaf (which represents a
complete string) will be mapped to a function.

[CS163] jaledit: just a little editor 19

 std::array<Node*, constants::char_limit>& children();
 const std::array<Node*, constants::char_limit>& children() const;
 Node*& child(char c);
 virtual void call(bool _) { (void)_; };

 virtual bool is_func() { return false; };
 virtual ~Node();

protected:
 Node* m_parent{};
 std::array<Node*, constants::char_limit> m_children{};
};

template<std::invocable Func>
class FuncNode : public Node {
public:
 FuncNode(Func func, bool editable);
 void call(bool editable) override;

 bool is_func() override { return true; }

private:
 Func m_func;
 bool m_editable;
};

} // namespace keybind

Autocompletion

Introduction
Initially, when coming up with ideas for this project, I intended to also use the Trie for
prefix matching. However, an observable property of modern editors is that they do
not perform strict prefix matching. You can make a typo, and the autocomplete
engine will still suggest the most suitable keywords.

This requires an Approximate String Matching algorithm. This has been a popular
topic, as it is required to solve many problems from different fields, including (but not
limited to):

Matching of nucleotide sequences from DNA data;

Spam filtering;

Plagiarism and copyright infringement detection.

The Smith-Waterman Algorithm

[CS163] jaledit: just a little editor 20

There are many CLI tools for filtering (GNU grep, Fuzzy Finder, Ugrep, Ripgrep, The
Silver Searcher…) as well. The algorithm that I choose for autocompletion is the
Smith-Waterman algorithm, inspired by Fuzzy Finder, one of my favorite tools.

The Smith-Waterman algorithm performs local sequence alignment to match as
many local sequences as possible. This allows more flexibility and fewer penalties
for typos, using custom scoring criteria.

The algorithm to match 2 strings and consists of these steps:

1. Set the scoring:

a. is the similarity score.

For jaledit,

b. is the score if the length of the ignored gap is . For jaledit, .

2. Initialize a matrix of size , filled with 0.

3. Fill the matrix with the following formula:

4. The final score is .

Keywords with the highest scores will be presented to the user.

Both the time and space complexity of this algorithm is . However, the length
of the input pattern is usually small, so this algorithm is acceptable.

Implementation

int Suggester::calc_score(const std::string& keyword,
 const std::string& pattern) {
 // Smith-Waterman algorithm
 // https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm

 constexpr int match = 16;
 constexpr int mismatch = -128;
 constexpr int gap = -64;

 int max_score = 0;

a b

s(c , c)1 2

s(c , c) =1 2 {
16 (if c = c)1 2

−128 (otherwise)

Wk k W =1 64

H (∣a∣ + 1) × (∣b∣ + 1)

H =ij max

⎩

⎨

⎧H + s(a , b)i−1,j−1 i j

H −Wi−k,j k

H −Wi,j−l l

0

maxHij

O(nm)

[CS163] jaledit: just a little editor 21

 std::vector matrix(pattern.size() + 1, std::vector(keyword.size() + 1, 0));

 for (std::size_t i = 1; i <= pattern.size(); ++i) {
 for (std::size_t j = 1; j <= keyword.size(); ++j) {
 int match_score
 = pattern[i - 1] == keyword[j - 1] ? match : mismatch;

 matrix[i][j]
 = std::max({matrix[i - 1][j - 1] + match_score,
 matrix[i - 1][j] + gap, matrix[i][j - 1] + gap, 0});

 max_score = std::max(max_score, matrix[i][j]);
 }
 }

 return max_score;
}

Syntax highlight

Introduction
The most common way to perform syntax highlighting is by performing a lexical
analysis. This means that we are converting the source code into categories of
meaningful lexical tokens. For programming languages, the categories include
identifiers, operators, grouping symbols, and data types.

Lexical analysis is also the first step of compiling a source code into an executable.
The program used to perform the lexical analysis is called a “Lexer”. There are many
lexer generators used by huge projects, but for practice purposes, I decided to
implement my own lexer manually.

enum class TokenKind : std::size_t {
 End,
 Invalid,
 Preproc,
 Symbol,
 OpenParen,
 CloseParen,
 OpenCurly,
 CloseCurly,
 OpenSquare,
 CloseSquare,
 OpenAttr,
 CloseAttr,
 Semicolon,
 Keyword,
 Comment,
 String,
 Char,

[CS163] jaledit: just a little editor 22

 Type,
 Number,
 Function,
 Operator,
};

class Lexer {
public:
 Lexer(std::string_view text);
 Token next();

private:
 std::string_view m_text;
 std::size_t m_pos{};

 bool starts_with(std::string_view prefix) const;
 void skip(std::size_t n);
 void trim_left();
};

Parsing?
For better analysis of the grammar structure of a language, parsing is often done to
convert the lexed tokens into a tree structure. However, the targeted language for
syntax highlight demonstration, C++, is an extremely tricky language to perform
parsing, as its grammar is highly contextual and requires a lot of look-ahead. In the
end, I chose not to do the parsing.

Coloring
A benefit of not performing parsing is that there is no need to analyze the whole file.
Lexical analysis can be done on each line, so only visible lines are analyzed and
colored.

Each type of token is assigned to a color. jaledit currently supports 41 literal tokens,
14 data type tokens, and 84 C++ keywords.

constexpr std::array<Color, constants::token_count> kind_colors = {{
 {0, 0, 0, 0}, // End
 {76, 79, 105, 255}, // Invalid
 {23, 146, 153, 255}, // Preproc
 {76, 79, 105, 255}, // Symbol

 {223, 142, 29, 255}, // OpenParen
 {223, 142, 29, 255}, // CloseParen

 {223, 142, 29, 255}, // OpenCurly
 {223, 142, 29, 255}, // CloseCurly

[CS163] jaledit: just a little editor 23

 {223, 142, 29, 255}, // OpenSquare
 {223, 142, 29, 255}, // CloseSquare

 {223, 142, 29, 255}, // OpenAttr
 {223, 142, 29, 255}, // CloseAttr

 {23, 146, 153, 255}, // Semicolon

 {230, 69, 83, 255}, // Keyword
 {188, 192, 204, 255}, // Comment
 {64, 160, 43, 255}, // String
 {64, 160, 43, 255}, // Char
 {254, 100, 11, 255}, // Type
 {254, 100, 11, 255}, // Number
 {114, 135, 253, 255}, // Function
 {4, 165, 229, 255}, // Operator
}};

Finder
There are many algorithms to find all occurrences of a substring in a large string. I
personally use the Z algorithm, since it is easier to understand and easier to
implement.

Introduction
We have a string . We define as the longest common prefix of
and (which is the suffix of starting from index).

 is not well-defined by the algorithm. We can let:

The implementation of jaledit defines .

For example, considering "aaabaab" :

 (longest common prefix of "aaabaab" and "aabaab" is "aa")

 (longest common prefix of "aaabaab" and "abaab" is "a")

 (longest common prefix of "aaabaab" and "baab" is "")

 (longest common prefix of "aaabaab" and "aab" is "aa")

 (longest common prefix of "aaabaab" and "ab" is "a")

s = s ..s0 n−1 z[i] s

s ..si n−1 s i

s0

s =0 {
n (if comparing s with itself is allowed)
0 (otherwise)

s =0 0

z =0 0

z =1 2

z =2 1

z =3 0

z =4 2

z =5 1

[CS163] jaledit: just a little editor 24

 (longest common prefix of "aaabaab" and "b" is "")

Hence, .

Implementation
This is the trivial implementation:

int n = s.size();
std::vector<int> z(n);

for (int i = 1; i < n; i++) {
 while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
 ++z[i];
 }
}

It can be seen from the above example that there are some repeating longest
common prefixes, as we consider matching each suffix of in each step.

We define a segment match as any substring that is equal to any prefix of . We
also keep track of the rightmost segment match by keeping track of the range

 corresponding to it.

When calculating , there are some scenarios:

 (the index is outside the segment match): proceed with the trivial
implementation method, update if needed;

 (the index is inside the segment match): it can be figured out that
and are already matching, we can assign

then proceeds with the trivial algorithm and updates if needed.

std::size_t z_length = z_text.length();
std::vector<std::size_t> z(z_length, 0);
std::size_t l = 0, r = 0;

for (std::size_t i = 1; i < z_length; i++) {
 if (i < r) {
 z[i] = std::min(r - i, z[i - l]);
 }
 while (i + z[i] < z_length && z_text[z[i]] == z_text[i + z[i]]) {
 ++z[i];
 }
 if (i + z[i] > r) {

z =5 0

z = [0, 2, 1, 0, 2, 1, 0]

O(n)2

s

s

[l, r)

z[i]

i ≥ r

r

i < r s ..sl r−1

s ..s0 r−l−1

z =i min{
zi−l

r − i (in case i + z ≥ n)i−l

r

[CS163] jaledit: just a little editor 25

 l = i;
 r = i + z[i];
 }
}

It can be proved that the time complexity for this algorithm is .

Finding a string in the file
Let . can be any character that is guaranteed
to not appear in both the pattern and the content, as it acts as a separator. Then,
perform the Z algorithm on .

For each index from (we are skipping the pattern and the separator
in), if , then is the beginning of a
match.

Rejected Experiments
These are the earlier experiments of the project that did not make it to the final
submission. The implementation for these experiments can be found in the devel-
piece-table branch of the repository.

C
In the early stages, the project was written in C to push the boundaries of
performance and increase the difficulty of implementation. C was a good language,
and this project might have ended up becoming a C project.

However, as the project got more complex, it became tricky to continue the
development with C. Due to the lack of modern features and the lack of time, the
project had to switch back to C++.

Piece Table/Piece Tree
Many articles suggested that the Piece Table (or its upgrade, Piece Tree) is the
absolute best data structure for text editors.

However, one big problem with the Piece Table is the time complexity to
access at an arbitrary position in the file, due to the use of a Linked List to link the
pieces of text. The Piece Tree fixes this problem by leveraging the tree model,
allowing access, but implementing efficient Undo/Redo becomes a

O(n)

z_text = pattern+ ⋄ + content ⋄

z_text

i ∣pattern∣ + 1
z_text z =i ∣pattern∣ contenti−(∣pattern∣+1)

O(n)

O(log n)

[CS163] jaledit: just a little editor 26

problem that even Visual Studio Code used to have. The perfect “Piece Tree” is too
complicated to implement, given the short development time of the project.

I tried the Piece Table. To most people, the cursor movement speed may be
negligible for small files. But for a long-time Vim user, the delay was immediately
noticeable. After switching to another data structure, the cursor movement speed of
jaledit became much faster, even beating Visual Studio Code.

